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Abstract

Here stochastic differential equations with memory means delay stochastic differential equa-
tions. In this work we have proved a stability theorem (for the diffusion of the S.D.E. (in [3])
which is an extension of the stability theorem of section three (in [3])to a stability theorem in
history space. The work in this section is done by suitable modifications of the corresponding
work in [12]. In [3] we have formulated an example of the main delay stochastic differential
equation , see [3] and [1]. The example which we have considered is of the following form:

d

 x1(t)
x2(t)
x̃t

 =

 x2(t)
−x1(t) +

∫∞
0
e−s(xt1(s)− x1(t))ds

−(x̃t)′ − x2(t)

 dt+

 0
α‖x̃t‖

0

 dWt

where the ordered triple
(
x1(t), x2(t), x̃t

)
can be considered as representing position, velocity

and history of position respectively. We will call the space containing this triple ”the history
space X”. In section three of [3]) we have proved a stability theorem for a diffusion of a S.D.E.
in Rn. With a suitable choice of Lyapunov functional we have proved that the motion will
finally come to rest at the origin. In section four of [3]),we have extended the space Rn of
section three in [3]) to a history space, i.e. to a space with three components; position, velocity
and history of position. Also in [3])we have formulated our delay S.D.E. on this history space
X and also we found the generator of the diffusion. The present work was suggested by Prof.
Maassen,J.D.M.,Katholik University of Nijmegen,The Netherlands.

1 Introduction

By ”with memory” we mean a delay S.D.E. in which the initial process is defined on an interval of
time in the past and not at a particular point as in the ordinary S.D.E.’s. Stochastic Differential
Equations with memory serve as models of noisy physical processes whose time evolution depends
on their past history. In physics, lazer dynamics with delayed feed back is often invistigated as
well as the dynamics of noisy bistable systems with delay. In biophysics,stochastic equations are
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used to model delayed visual feed back systems or human postural way. For more details see the
website of Prof. Salah-E.A.Mohammed namely ”sfde.math.siu.edu”. By ”with memory” we mean
a S.D.E. in which the initial process is defined on an interval of time in the past and not at a
particular point as in the ordinary S.D.E.’s.

2 The stability theorem in history space

Here we shall prove an extension of the stability theorem 1 (in [3]) to a stability theorem in the
history space X defined in section four of [3].

Let Q1 = {x : V (x) < q} = {x : ‖x‖ <
√

2q}. Then

Xt ∈ Q =⇒ V (Xt) < q

⇐⇒ 1
2 ‖Xt‖2 < q

⇐⇒ ‖Xt‖ <
√

2q.
(2.1)

It is clear that the set Q is bounded.

Before stating Theorem 1 we need the following settings (see [12], Theorem 4.2). In general the
set Q1 defined in (2.1) is not bounded while we have defined the generator on bounded sets only.
However we can deal with the situation ( appearing in our application ) in which V (Xt) ≤ q implies
‖Xt‖ ≤M where M is a constant independent of the initial history X0. Then if we consider only
the initial histories belonging to a bounded set in Q1, there exist a bounded set U ⊂ X such that
Xt ∈ U for all t ≤ τ1 (τ1 is the exit time from Q1 ). More precisely, we let V,Q1 and τ1 be as
above and let Xt be the solution of the S.D.E. (iv.5) (in [3]) with coefficients a and b satisfying
the inequalities (iv.6) and (iv.7) (in [3]). We assume that for any bounded set D in X there is a
constant K3 > 0 such that for x = X0 in D

⋂
Q1 = QD, the norm of Xt is bounded by K3 for

0 ≤ t ≤ τ1 :
‖Xt‖ ≤ K3 for 0 ≤ t ≤ τ1 (2.2)

Put B = {x ∈ X : ‖x‖ ≤ K3} and Q := Q1

⋂
B ⊃ QD. Let τ be the exit time from Q and

let τB be the exit time from B (τB ≥ τ) and let b̄ and σ̄ be such that b̄(x) = b(x), ∀x ∈ B and
σ̄(x) = σ(x) ∀x ∈ B and such that b̄ ≡ 0, σ̄ ≡ 0 outside a neighborhood U of B. The process X̄t

of the S.D.E. (iv.5)(in [3]) with coefficients b̄, σ̄ is regarded as having phase space Y as constructed
in lemma (3.B) 0f [12]. Also by Theorem 2.3 of [12], if x = X0 ∈ B, then X̄t = Xt for t ≤ τB . Let
Ā be the weak infinitesimal operator of X̄t. Let Xt denote the process X̄τ∧t (= Xτ∧t) and let A
be its infinitesimal generator. Also for a fixed x = X0 ∈ Q let ΩQ = ΩQ,x denote the set

ΩQ =

{
ω ∈ Ω : sup

t≥0
V (Xt(ω)) < q

}
(2.3)

Let τ be the exit time from Q, i.e. τ = inf{t : Xt /∈ Q}. Also let τ(t) = τ ∧ t.

1 Theorem (The Stability Theorem). Under the conditions described above, and with A and V
as in section four in [3], the following result is valid. If

(i) AV (x) ≤ 0 for all x ∈ Q and

(ii) AV is uniformly continuous on Q, then

(a) P(ΩQ) ≥ 1− V (x)
q ∀x ∈ Q

(b) AV (Xt)→ 0 as t→∞ a.s. in ΩQ
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Since, by (iv.14)( in [3]), AV (Xt) = 1
2

(
α2 − 1

)
‖x̃t‖2, from (b) it follows that lim

t→∞

∥∥x̃t∥∥2
= 0.

We shall first check that conditions (i) and (ii) are satisfied with V and A as in equations (iv.8)
and (iv.14) (in [3]) respectively. By (iv.14) (in [3]) it is easy to see that

AV (x) ≤ 0 ∀x ∈ Q as α2 < 1 and ‖x̃‖2 ≥ 0 (2.4)

Thus condition (i) is satisfied.

To check condition (ii), we shall only check that AV is Lipschitz, because then it will be uniformly
continuous, i.e. we need only to check that

|AV (x)−AV (y)| ≤ K ‖x− y‖X ∀x, y ∈ Q.

Now

|AV (x)−AV (y)| =
∣∣∣ 12 (α2 − 1

)
‖x̃‖2 − 1

2 (α2 − 1) ‖ỹ‖2
∣∣∣ (by (iv.14) in [3])

=
∣∣ 1

2

(
α2 − 1

)∣∣ ∣∣∣‖x̃‖2 − ‖ỹ‖2∣∣∣
= K ′

∣∣∣‖x̃‖2 − ‖ỹ‖2∣∣∣
where K ′ = 1

2 (1− α2) is a positive constant
= K ′ |(‖x̃‖ − ‖ỹ‖) (‖x̃‖+ ‖ỹ‖)|
≤ K ′ |(‖x̃‖ − ‖ỹ‖) (‖x‖+ ‖y‖)|
≤ K ′2

√
2q |‖x̃‖ − ‖ỹ‖| as ‖x‖ <

√
2q and ‖y‖ <

√
2q

= K |‖x̃‖ − ‖ỹ‖|
where K = 2K ′

√
2q is a real constant

≤ K‖x̃− ỹ‖

≤ K
(
‖x̃− ỹ‖2 + |x1 − y1|2 + |x2 − y2|2

) 1
2

= K ‖x− y‖X .

Thus AV is Lipschitz and hence uniformly continuous on Q.

Proof of Theorem 1. Now it can be easily checked that the assumptions of Theorem 1(in [3]) where
Xt ∈ Rn are implied by the assumptions of Theorem 1, where Xt ∈ history space X. Hence using
a similar argument as in the proof of Theorem 2.1 we find that V (Xt) is a supermartingale by
using Dynkin’s formula and the equations (iv.12) and (iv.13) (in [3]) . Thus for x ∈ Q we have by
condition (i) of this theorem.

ExV (Xx
τ(t))− V (x) = Ex

∫ τ(t)

0

AV (Xs)ds ≤ 0.

Hence ExV (Xt) ≤ V (x). Also by the martingale inequality we have

Px(ΩQ) = Px{ω : supt≥0 V (Xt) < q}
= 1−Px{ω : supt≥0 V (Xt) ≥ q}
≥ 1− V (x)

q .

Also by the martingale convergence theorem we find that V (Xt) converges to a non-negative

random variable with probability 1. Thus ‖Xt‖2 → v with probability 1.

To prove part (b) of this theorem we shall use a method similar to that used in the proof of Theorem
(4.2) of Mizel and Trutzer ([12]). Now define a map k : X → R+ by k(x) = 1

2 (1− α2)‖x̃‖2. Hence
AV (Xt) = −k(Xt). Now it is easy to see that k(x) is Lipschitz as AV is Lipschitz on Q. Also
it can easily be seen that k(x) is Lipschitz on the set Rδ = {x : k(x) < δ} where δ is a positive
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real number, and hence k(x) is uniformly continuous on the set Rδ. Hence all the assumptions
of Lemma (4.A) of Mizel and Trutzer [12] are satisfied and hence all its conclusions also hold for
Xt ∈ X. Similarly if we prove that the condition :

Px

{
τ ≥ t+ h, sup

0≤s≤h

∥∥X̄t − X̄t+s

∥∥ > ε

}
→ 0 as h→ 0 (2.5)

uniformly in t (sufficiently large) holds for each X0 = x ∈ QD, then all the hypotheses of Theorem
1 of Mizel and Trutzer [12] are satisfied and hence it’s conclusion also holds for our Xt namely
k(Xt)→ 0 as t→∞ a.s in ΩQ. To prove (2.5) we have

Px

{
τ ≥ t+ h, sup

0≤s≤h

∥∥X̄t − X̄t+s

∥∥ > ε

}
≤ 1

ε2
E

{
sup

0≤s≤h
‖Xt −Xt+s‖2 |τ ≥ t+ h

}
(2.6)

Note that we will omit the bar in X̄t and write Xt for X̄t. Now for τ ≥ t + h and s ≤ h,we have
by using equation(iv.5) (in [3]):

‖Xt −Xt+s‖2 =

∥∥∥∥−∫ t+s

t

b(Xu)du−
∫ t+s

t

σ(Xu)dWu

∥∥∥∥2

≤ 2

∣∣∣∣∫ t+s

t

b(Xu)du

∣∣∣∣2 + 2

∣∣∣∣∫ t+s

t

σ(Xu)dWu

∣∣∣∣2 . (2.7)

Now by Hölder inequality, the inequality (2.2) of Mizel and Trutzer [12], and inequality (iv.6)(in
[3]) and inequalities(2.2) and (2.7) we have

E

{
sup

0≤s≤h
‖Xt −Xt+s‖2 |τ ≥ t+ h

}
≤ 2E

{
sup

0≤s≤h
s

∫ t+s

t

|b(Xu)|2du |τ ≥ t+ h

}
+2E

{∫ t+h

t

|σ(Xu)|2du |τ ≥ t+ s

}

≤ 2h

∫ t+h

t

K2
1 (‖Xu‖+ 1)2du+ 2

∫ t+h

t

K2
1 (‖Xu‖+ 1)2du

≤ 2h

∫ t+h

t

K2
1 (K3 + 1)2du+ 2

∫ t+h

t

K2
1 (K3 + 1)2du

= 2K2
1 (K3 + 1)2h2 + 2K2

1 (K3 + 1)2h

= 2K2
1 (K3 + 1)2(h2 + h)

= O(h) as h→ 0 uniformly in t. (2.8)

Thus by (2.6) and (2.8) we obtain that

Px

{
τ ≥ t+ h, sup

0≤s≤h

∥∥X̄t − X̄t+s

∥∥ > ε

}
→ 0 as h→ 0, (2.9)

uniformly in t (sufficiently large). Hence we have k(Xt) → 0 as t → ∞ a.s. Thus AV (Xt) =
−k(Xt) = 1

2 (α2 − 1)‖x̃t‖2 → 0 as t→∞ a.s. on ΩQ. Hence we have ‖x̃t‖2 → 0 as t→∞ a.s. on
ΩQ. Thus Theorem 1 is proved.

Now by Dynkin’s formula we have

EV (Xx
t ) = EV (x) + E

∫ t

0

AV (Xx
s )ds
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Thus by equation(iv.12)(in [3]) we have

1

2
E ‖Xt‖2 =

1

2
E ‖x‖2 +

1

2
(α2 − 1)

∫ t

0

E ‖x̃u‖2 du (2.10)

and hence
d

dt
E ‖Xt‖2 = −KE

∥∥x̃t∥∥2
< 0 (2.11)

where K = 1−α2 is a positive constant. Hence E ‖Xt‖2 is decreasing ∀t ≥ 0. Thus E ‖Xt‖2 → Ev
where v ≥ 0.

Since E ‖x̃u‖ ≤ E ‖Xu‖, then by the differential equation (2.11) it follows that

d

dt
E ‖Xt‖2 +KE ‖Xt‖2 ≥ 0 (2.12)

Now by (2.12) it follows that the solution process Xt satisfies

E ‖Xt‖2 ≥ C exp (−Kt)

Now at t = 0; E ‖Xt‖2 = E‖x‖2 and hence C = E‖x‖2
Thus

E ‖Xt‖2 ≥ E‖x‖2 exp (−Kt) (2.13)

Hence, it follows that E ‖Xt‖2 takes values between zero and E‖x‖2. Now by (2.11), (2.12) and

(2.13) it follows that E ‖Xt‖2 is decreasing and it starts at t = 0 with the value E‖x‖2 and decreases
till it reaches some value larger than or equal to zero.

2.1 More on stability

In Theorem 1 we have proved that ‖x̃t‖2 → 0 as t → ∞ a.s. on ΩQ. Our final aim is to

see the behavior of ‖Xt‖2 (= x1(t)2 + x2(t)2 + ‖x̃t‖2) as t → ∞. Now it remains to study
limt→∞(x1(t)2 + x2(t)2). We shall first state and prove the following lemma.

2 Lemma. Put A(t) = A(0)−
∫ t

0
α ‖x̃u‖ sinu dWu−

∫∞
0
e−s

∫ t
0
x̃u(s) sinu du ds, and B(t) = B(0)+∫ t

0
α ‖x̃u‖ cosu dWu +

∫∞
0
e−s

∫ t
0
x̃u(s) cosu du ds. Then(

x1(t)
x2(t)

)
=

(
cos t sin t
− sin t cos t

)(
A(t)
B(t)

)
(2.14)

Moreover, x1(0) = A(0), and x2(0) = B(0). Consequently ∀t ≥ 0

x1(t)2 + x2(t)2 = A(t)2 +B(t)2 (2.15)

and hence

sup
t≥0

(
x1(t)2 + x2(t)2

)
<∞ if and only if sup

t≥0

(
A(t)2 +B(t)2

)
<∞. (2.16)

In addition,

E

∫ ∞
0

∥∥x̃t∥∥2
dt <∞ (2.17)
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and hence it follows that

sup
t>0

E

∣∣∣∣∫ ∞
0

e−s
∫ t

0

x̃u(s)eiudu ds

∣∣∣∣2 <∞ and (2.18)

sup
t>0

E

(∫ ∞
0

e−s
∫ t

0

x̃u(s) cosu du ds1ΩQ

)2

and (2.19)

sup
t>0

E

(∫ ∞
0

e−s
∫ t

0

x̃u(s) sinu du ds

)2

(2.20)

are finite as well. Of course, here i =
√
−1.

It probably follows that the limits limt→∞A(t) and limt→∞B(t) exist P-almost surely.

Proof. Put

(x1 + ix2)(t) (2.21)

= e−it(x1 + ix2)(0) + ie−it
(∫ ∞

0

e−s
∫ t

0

x̃u(s)eiudu ds+

∫ t

0

α‖x̃u‖eiudWu

)
.

Hence,

d(x1 + ix2)(t) = −i(x1 + ix2)(t)dt+ i

∫ ∞
0

e−sx̃u(s)ds dt+ iα‖x̃t‖dWt. (2.22)

Thus (2.21) satisfies the delay S.D.E. (iv.2) (in [3])
Now put

z(t) = (x1 + ix2)(t), F (t) = (A+ iB)(t). (2.23)

Then by (2.21) it follows that

z(t) = e−it(A+ iB)(t) = −ie−it(B − iA)(t). (2.24)

Hence (2.14) follows. Moreover it follows that x1(0) = A(0) and x2(0) = B(0). Now by (2.24) we
find that equation (2.15) holds and hence (2.16) also holds. Now we shall prove inequalities (2.17)
and (2.18). Now by using the fact that ‖x‖2 = x1(0)2 + x2(0)2 + ‖x̃0‖2 and equations (2.10) and
(2.15) we have ∀t ≥ 0

(1− α2)E

∫ t

0

‖x̃u‖2du ≤ E
{
A(t)2 +B(t)2 + ‖x̃t‖2

}
+ (1− α2)E

∫ t

0

‖x̃u‖2du

= E
{
A(0)2 +B(0)2 + ‖x̃0‖2

}
< ∞ (2.25)

Hence inequality (2.17) follows. Now we have

(B − iA)(t) = (B − iA)(0) +

∫ t

0

α‖x̃u‖ eiudWu + S(t) (2.26)

where S(t) =
∫ t

0

∫∞
0
e−sx̃u(s)dseiudu.

Equation (2.26) can be written as

S(t) = B(t)− iA(t)−B(0) + iA(0)−
∫ t

0

α‖x̃u‖ eiudWu (2.27)
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Then by equations (2.10), (2.17) and (2.27) and using the properties of the Ito integral we get√
E|S(t)|2 ≤

√
E(B(t)2 +A(t)2) +

√
E(B(0)2 +A(0)2)

+

√
E

∣∣∣∣∫ t

0

α‖x̃u‖ eiudWu

∣∣∣∣2
≤ 2

√
E(B(0)2 +A(0)2) +

√
E‖x̃0‖2 + α

√
E

∫ t

0

‖x̃u‖2du

≤ 2
√
E(B(0)2 +A(0)2) +

√
E‖x̃0‖2 + α

√
E

∫ ∞
0

‖x̃u‖2du

< ∞ (2.28)

Hence (2.18) follows, and hence also (2.19) and (2.20). To study limt→∞(x1(t)2 + x2(t)2) rewrite
equation (2.21) as follows:

eitz(t)− z(0) = i

∫ ∞
0

e−s
∫ t

0

x̃u(s)eiudu ds+ i

∫ t

0

α‖x̃u‖2eiu dWu

= iS(t) + iT (t) (2.29)

where S(t) =
∫∞

0
e−s

∫ t
0
x̃u(s)eiudu ds and T (t) =

∫ t
0
α‖x̃u‖eiu dWu.

Put
Q(t) = iS(t) + iT (t) (2.30)

Now we shall show that Q(t) is a Dirichlet process, by checking that Q(t) satisfies the conditions
of Definition 1 in [4]. By letting π(0, t) = (0 = t0 < t1 < ... < tN+1 = t) be a finite partition of the
time interval [0, t] and letting δ = supk |tk+1 − tk|, we have,

N∑
k=0

E |S(tk+1)− S(tk)|2 =

N∑
k=0

E

∣∣∣∣∫ tk+1

tk

∫ ∞
0

e−sx̃u(s)dseiudu

∣∣∣∣2

≤
N∑
k=0

E

∫ tk+1

tk

12du

∫ tk+1

tk

∣∣∣∣∫ ∞
0

e−sx̃u(s)dseiu
∣∣∣∣2 du

≤ δE
∫ tN+1

0

{∫ ∞
0

12e−sds ·
∫ ∞

0

(x̃u(s))2e−sds

}
du

= δE

∫ t

0

‖x̃u‖2du. (2.31)

Inequality (2.31) holds for any natural number N . Thus by inequalities (2.17) and (2.31) it follows
that

lim
δ→0

N∑
k=0

E |S(tk+1)− S(tk)|2 = 0 (2.32)

Observe also that the stochastic integralT (t), t ≥ 0 in (2.29)is a martingale satisfying E (T (t))
2
<

∞ for all t ≥ 0 and hence by equations (2.30) and (2.32) it follows that Q(t) is a Dirichlet process
as it satisfies Definition 1 of [4]. Let D denote the space of Dirichlet processes and define a subspace
D0 ⊆ D by

D0 =

{
S ∈ D : lim

m→∞
sup
n

∞∑
k=m2n

E
∣∣S((k + 1)2−n)− S(k2n)

∣∣2 = 0

}
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Clearly the integrals S(t) and T (t) defined by (2.29) belong to D0, and so also Q(t) ∈ D0. Observe
also that if λ is the Lebesgue measure and P our probability measure then for any ε > 0 we have

λ⊗ P
{

(u, ω) : I[m,∞)

∫ ∞
0

e−sx̃u(s)ds > ε

}
≤ 1

ε2
E

∫ ∞
m

(∫ ∞
0

e−sx̃u(s)ds

)2

du→ 0 as m→∞. (2.33)

We also have

1

2π
E

∫ ∞
−∞

∣∣∣∣∫ ∞
0

∫ ∞
0

e−sx̃u(s)eiξuds du

∣∣∣∣2 dξ = E

∫ ∞
0

(∫ ∞
0

e−sx̃u(s)ds

)2

du (2.34)

Comments:
Note that till now we have not finished studying limt→∞ ‖Xt‖2. But it is probable that the limiting
situation is as follows:
The sum of the squares of the position and the velocity of the Dangling Spider namely

(
x1(t)2 + x2(t)2)

)
tends to a constant as t → ∞ . In other words the co-ordinates of the position and the velocity
of the Dangling Spider form a circle for sufficiently large t. Let t 7→ x̃t(·) be the third component
of Xt ∈ X, the solution to the delay S.D.E. (iv.1)(in [3]). (The space X is also called the history
space.) We notice that limt→∞ ‖x̃t(·)‖ = 0: see assertion (b) of Theorem 1. Then the function

ξ 7→
∫∞

0

∫∞
0
e−sx̃u(s)ds eiξudu := L2- limt→∞

∫ t
0

∫∞
0
e−sx̃u(s)ds eiξudu can be interpreted as an

L2-function. More precisely, by Plancherel’s theorem we have:

1

2π
E

∫ ∞
−∞

∣∣∣∣∫ ∞
0

∫ ∞
0

e−sx̃u(s)ds eiξudu

∣∣∣∣2 dξ = E

∫ ∞
0

∣∣∣∣∫ ∞
0

e−sx̃u(s)ds

∣∣∣∣2 du
≤ E

∫ ∞
0

‖x̃u‖2 du <∞.

2.2 Remarks:

(a) All the results which we have established in this work can be extended by replacing the
Brownian motion W by another process Z : [0, a]×Ω→ R which is a continuous martingale
adapted to {Ft}t∈[0,a] and has independent increments and satisfies with some constant K
the inequalities

|E[Z(t)− Z(s)]|Fs| ≤ K(t− s) and

E
(
|Z(t)− Z(s)|2 |Fs

)
≤ K(t− s) for 0 ≤ s ≤ t ≤ a.

Observe that the above properties of Z which we have just mentioned are the only properties
of W which we have used (in case of Brownian motion) to prove the results which we have
obtained in this work.See [2].

(b) All the results which we have established in this work, can be extended to a processes
f ′, g′ : [0, a] × Rn × L2(J,Rn) → L(Rm,Rn) (m,n ∈ N) instead of the processes f, g :
[0, a] × Rn × L2(J,Rn) → Rn (n ∈ N), and instead of the Brownian motion W we use
the process Z : [0, a]× Ω→ Rm which is a martingale adapted to {Ft}t∈[0,a], continuous on
[0, a], and has independent increments and satisfies for some constant K the inequalities

|E[Z(t)− Z(s)]|Fs| ≤ K(t− s) and E
(
|Z(t)− Z(s)|2 |Fs

)
≤ K(t− s)

for 0 ≤ s ≤ t ≤ a. See [2].

8



(c) All the lemmas and theorems in this work hold for any delay interval J ′ = [−r, 0) (r ≥ 0).See
[2].
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